יאט וואוווא פווטוושאריטי שווה ואומומוים אי שאקש וואוויבעונוזאפווטווא אויוויא יאי אי אי אי אי אי אי

DV, WALL DC ILCAICH AS BIAIDEACHUC.

USN

Sixth Semester B.E. Degree Examination, June/July 2017 **Digital Signal Processing**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

- 1 processing? (04 Marks)
 - b. Consider the sequence $x(n) = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$. Find the 6-point DFT of the sequence x(n). Sketch the magnitude and phase spectra.
 - State and prove circular time shift property of DFT.

(04 Marks)

d. Compute the N-point DFT of the signal,

$$x(n) = e^{\frac{j^2 \pi}{N} Kon}$$
; $0 \le n \le N-1$. (04 Marks)

- a. Compute the 4-point DFT of the following sequences using suitable property of the DFT: 2 $x_1(n) = (1, 2, 3, 2)$ and $x_2(n) = (3, 2, 1, 2)$ (06 Marks)
 - b. Consider a length-6 sequence $x(n) = \{1, 3, -2, 1, -3, 4\}$ with a 6-point DFT given by X(K). Evaluate $\sum_{K=0}^{5} |X(K)|^2$. (04 Marks)
 - c. Find the 4 point circular convolution of the sequences $x_1(n) = (1, 2, 3, 1)$ and $x_2(n) = (4, 3, 2, 2)$ using the time domain approach based on formula. Verify the result using frequency domain approach.
- a. Compute the 4-point circular convolution of two sequences given by x(n) = (1, 2, 3, 4) and h(n) = (1, 2, 2, 1) using circular array method. (04 Marks)
 - b. Find the output y(n) of a FIR filter whose impulse response h(n) = (1, 1, 1) and input signal x(n) = (3, -1, 0, 1, 3, 2, 0, 1, 2, 1) using overlap save method. Use 5-point circular convolution in your approach. (08 Marks)
 - Find the 8-point DFT of the sequences $x(n) = 2^n$; $0 \le n \le 7$ using Radix-2 DIT-FFT algorithm. (08 Marks)
- Given x(n) = n+1; $0 \le n \le 7$. Find X(K) using radix-2 DIF-FFT algorithm. (10 Marks)
 - Develop a DIT-FFT algorithm for evaluating the DFT for composite number N = 9. (10 Marks)

PART – B

- 5 Explain Bilinear method of transforming an analog filter into digital filter. Also show the mapping from S to Z plane. (06 Marks)
 - b. Convert the following second order analog filter with system transfer function, $H(s) = \frac{(s+a)}{(s+a)^2 + b^2}$ into a digital filter with infinite impulse response by the use of impulse
 - invariance mapping technique.

(06 Marks)

c. Design an analog filter with maximally flat response in the passband and an acceptable attenuation of -2dB at 20 rad/sec. The attenuation in the stopband should be more than 10 dB beyond 30 rad/sec. (08 Marks) a. Determine H(z) for a lowest order butterworth filter satisfying the following constraints:

$$\begin{split} \sqrt{0.5} & \leq \left| H(e^{j\omega}) \right| \leq 1 \; ; \; 0 \leq \left| \omega \right| \leq \frac{\pi}{2} \\ \left| H(e^{j\omega}) \right| \leq 0.2 \; ; \; \frac{3\pi}{4} \leq \omega \leq \pi \end{split}$$

with T = 1 sec. Apply impulse invariant transformation.

(10 Marks)

- b. Design the digital filter using Chebyshev approximation and Bilinear transformation to meet the following specifications. Passband ripple = 1 dB for $0 \le \omega \le 0.15\pi$. Stopband attenuation ≥ 20 dB for $0.45\pi \leq \omega \leq \pi$.
- a. Design a lowpass digital filter to be used in an A/D-H(z)-D/A structure that will have a 7 -3dB cutoff at 30π rad/sec and an attenuation of 50 dB at 45π rad/sec. The filter is required to have a linear phase and the system will use a sampling rate of 100 samples / second. (10 Marks)
 - b. Design a normalized linear phase FIR filter having the phase delay of Z = 4 & at least 40 dB attenuation in the stopband. Also obtain the magnitude / frequency response of the filter.

(10 Marks)

An IIR filter is given by the difference equation, 8

$$y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-1)$$

Draw direct form - I and Direct form - II structures.

(10 Marks)

b. A digital system is given by,

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}.$$
 Obtain the parallel form structure. (05 Marks)

c. Realize the digital filter with system function given by,

H(z) =
$$1 + \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2} + \frac{1}{7}z^{-3} + \frac{1}{3}z^{-4} + \frac{1}{2}z^{-5} + z^{-6}$$
 (05 Marks)